Proceedings of the Second International Conference on Alfred Russel Wallace and the Wallacea Wakatobi - Indonesia, 10–13 November 2013

TAPROBANICA, ISSN 1800–427X. May, 2015. Vol. 07, No. 03: pp. 143–150, pl. 5–7. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia www.taprobanica.org

ISOLATION OF MARINE BACTERIA IN AMBON BAY WITH POTENTIAL BIOTECHNOLOGICAL FEATURES

Yosmina Tapilatu*

* Deep Sea Research Centre, Indonesian Institute of Sciences (LIPI), Jl. Y. Syaranamual Guru-guru Poka, Ambon 97233, Indonesia; E-mail: yosmina.tapilatu@lipi.go.id

Abstract

Ambon Bay is situated in the Wallacea biogeographical area. Despite various studies on marine natural resources reported from this bay, limited information is available on marine bacteria that produce compounds with potential biotechnological applications. We report here preliminary results of our attempt to isolate bacteria of this group from Ambon Bay. Nine different isolates were obtained, but only eight indicated potential as producers of compounds with biotechnological potential. Two isolates indicated agarolytic bacteria characteristics, whereas one showed the properties of exopolysaccharide (EPS) producing bacteria. Three isolates produced various pigments. Two were identified tentatively as members of actinomycetes, a group known as a prolific producer of antimicrobial compounds. Preliminary identification of the cell morphologies of each isolate revealed the dominance of cocci-shaped bacteria. Most of them showed optimal growth in 1 to 7 days when incubated at 30°C. These results indicate that Ambon Bay waters and the surrounding area could harbour marine bacteria with potential features for biotechnological applications.

Key words: eastern Indonesia, marine bacteria, secondary metabolites, Wallacea marine area

Introduction

Ambon Bay is situated in the Wallacea biogeographical area, known as one of the biodiversity hotspots of the world. The bay harbors various types of ecosystems, ranging from mangroves and coral reefs to seaweeds, indicating its potential for harboring bacterial producers of bioactive compounds. A considerable number of studies have been published on marine natural resources from this bay. However, far too little attention has been paid to its marine microbes, especially those producing compounds with potential features for biotechnological applications (Tapilatu, 2011). To the best of our knowledge, to date only two attempts have been made to isolate producers bacterial of putative proteorhodopsin and exopolysaccharide (EPS) (Tapilatu, 2012a, b) from this bay. Marine bacteria are attractive to researchers because they can potentially produce compounds with unique biological properties (Jensen & Fenical, 1996). This study seeks to obtain preliminary data which will help to address the gaps in the research of marine bacteria, producers of compounds with potential biotechnological features, from the coral reef ecosystems of Ambon Bay.

Materials and methods

Source of microorganisms: Samples (water, sponges, soft corals and sediments) were taken from four locations in Ambon Bay, two in the inner area (Hunut and Halong) and the remaining two (Eri and Batu Capeo) in the outer area (Fig. 1: pl. 5). This selective consideration was used to increase the possibility of isolating putative producers of bioactive compounds, where coral reefs were known to exist. Microbial symbionts of marine macroorganisms (eg. sponges, coral and algae) have been found previously to be potent producers of biologically active substances (Imhoff et 2011). They form a mutually al., advantageous symbiosis where antimicrobial compounds produced by microbial symbionts may protect the host surface against pathogenic colonization, in return for a nutrient rich environment (Penesyan et al., 2010). These areas were also selected because they represented locations with and without anthropogenic influence on the coral reefs ecosystems of these waters.

Water samples were taken using 50 ml sterile Falcon tubes in the water surrounding coral reefs. We also took sediment samples using the same type of tube, if collectible at the vicinity or at the bottom of the substrate growing soft corals/sponges. Actively growing portions (5-10 cm) of sponges and soft corals were cut with a knife and put individually into ziplock plastic bags containing seawater. All samples were stored at 4°C until transfer to the laboratory and kept afterwards at -20°C until analysis.

Growth conditions: Isolation was carried out by streaking 50 or 100 µl serially diluted (to 10^{-5}) samples of all types or by incubating 0.5 cm² pieces of sponges and soft corals on ISP2, GASWA and modified MA 2216 plates. The recipes of these three media were as follows. The ISP2 (Shirling & Gottlieb, 1969) medium contained 4 g yeast extract (YE), 10 g malt extract and 4 g dextrose in 500 ml natural sea water (NSW) and 500 ml distilled water (DW). The GASWA (Krediet et al., 2009) medium contained (per litre of DW) 20.81 g NaCl, 59.7 mg KCl, 9.85 g MgSO₄, 4.01 g MgCl₂.6H₂O, 1.1 mg K₂HPO₄, 33 µM Tris-(hydroxyl-aminomethane), 0.19 mg FeSO₄.7H₂O, 50 mg Peptone, 2 mg YE and 20 ml Glycerol. The pH was adjusted to 7 before autoclaving. The modified MA 2216 medium contained (per litre NSW) 1 g YE, 5 g Peptone. All solid media were prepared by adding 20 g purified agar (Difco) to each recipe. The NSW were filtered at 0.45 um prior to usage for all media preparation. Solid and liquid media were autoclaved at 121°C for 15 to 20 minutes.

Plates were incubated at 30°C for seven days. Purification was carried out by a double transfer process (plate to plate). observation of Visual the macromorphological features of the colonies was conducted, and bacterial cells were taken from actively growing colonies, stained with Crystal violet solution and observed under a Nikon binocular Z50i microscope.

Morphological screening of isolates with biotechnological potential: Pure bacterial colonies obtained were screened for potential features including EPS, agar degradation accompanied by the production of pigment and other compounds with potential biotechnological features. Isolates showing these activities were identified based on the macromorphological features of colonies, such as colony superficial textures and colors. Further analysis of compounds with potential biotechnological features was carried out only on actinomycetes isolates, because this group is known as prolific producers of this type of compound (Williams, 2009).

Screening for antagonistic activity: Initial tests of antagonistic activity were carried out using the cross-streak method (Sawasdee, 2012). Actively growing actinomycetes isolates BKBL7B.Ac and BKBL8B.Ac were streaked across the diameter of ISP2 plates. Fresh cultures (24 h old) of four isolates obtained during the project (BKBL1B.P, BKBL2B.P. BKBL3B.P, and BKBL4B.E, see table 1 for their morphological features) were streaked at right angles across them. Control was done by streaking the same four isolates at the same line without Streptomyces at the centre line. All bacterial isolates growths were observed after seven days of incubation at $30\pm2^{\circ}C$.

Table 1: Bacterial isolates obtained after incubation at 30°C. *Exopolysaccharide: AM, Aerial Mycelium; SM, Substrate Mycelium.

Isolate code	Sample type	Sampling location	Morphological characteristics on solid media	Putative features observed	Growth (days) on purification media	Cell shape
BKBL1B.P	Water	Halong	Round, entire, umbonate, dull, opaque, dark yellow		7 d on GASWA	Cocci
BKBL2B.P	Sponge	Batu Capeo	Round, wavy, umbonate, glossy, opaque, dark red	Pigment Production	7 d on ISP2	Cocci
BKBL3B.P	Sponge	Batu Capeo	Round, entire, glossy, raised, opaque, dark brown		5 d on MA 2216	Rod
BKBL4B.E	Sponge	Hunut	Round, entire, glossy, raised, opaque, white	EPS production	7 d on MA 2216	Cocci
BKBL5B.A	Sponge	Eri	Round, entire, glossy, raised, translucent		6 d on MA 2216	Cocci
BKBL6B.A	Sponge	Hunut	Irregular form and margin, muccoid, flat, opaque, whitish beige	Agarolytic	3 d on MA 2216	Cocci
BKBL7B.Ac	e Water	Batu Capeo	Wrinkle, opaque, dull, faint pinkish white AM*, yellow SM*	Antibacterial	6 d on ISP2	Hyphae
BKBL8B.Ac	e Water	Batu Capeo	Wrinkle, opaque, chalky, grey AM, brown SM	Anubacterial	7 d on ISP2	Hyphae
BKBL9B.Ac Sponge Eri Wrinkle, dull, o whitish beige		Wrinkle, dull, opaque, whitish beige	Unknown	3 d on ISP2	Cocci	

Actinomycetes isolates compounds analysis: Streptomyces sp. isolate BKBL7B.Ac was grown in GASWA and BKBL8B.Ac in ISP2. The incubation was carried out in three 500 ml flasks containing ~350 ml medium and 10% inoculums at room temperature in static condition for 30 days. At the end of the incubation period, the culture broth was extracted using Ethyl acetate (1:1, v/v), and evaporated afterward. The cells were harvested using sterile cotton and

macerated in Methanol for three days and extracted afterwards using Hexane and Ethyl acetate. Ethyl acetate extracts of culture broth (BE) as well as Hexane and Ethyl actetate extracts of cells were analyzed using HPLC. Due to the small amount of all type of cell extracts, only BE were analyzed using GC-MS.

Prior to HPLC analysis, the light absorbance areas of all samples were UV-Spectrophotometer analvzed using 1700 PharmaSPec Shimadzu (200-800 nm). The HPLC analysis was carried out using LC-20AD Shimadzu at maximum absorbance value obtained from the Spectrophotometer analysis. Five microlitres of each sample was analyzed using Methanol:Acetonytrile (70:30) as mobile phase. The column used was Shim-pack VP-ODS (size: 250 x 4.6 mm), and the flow rate was maintained at 1.0 mL/min.

The molecular weight was measured by GC-MS (GCMS-QP2010 Plus Shimadzu) with the following condition: Rtx-5MS column (30 meter) and diameter 0.25 mm. The temperature was programmed from 80°C to 280°C, with gradual increase of 20°C/min, holding time for 19 min at 280°C, and split injection mode. Carrier gas used was Helium at 1.19 mL/min, with pressure of 80.6 kPa. The amount of compounds in the extract would be indicated by peak amount the at chromatogram, which will be screened against Wiley7 spectral data base.

Results and discussion

Isolation of bacterial isolates: Nine bacterial isolates were obtained from all four locations, predominantly from sponges (six isolates) and water samples (Table 1). Eight of them showed bioactive properties, which should be studied further because of their potential applications in different areas of biotechnology. Isolation from soft corals and sediments did not yield any putative producer of biotechnologically relevant compounds and this might be due to the isolation media used and/or other incubation conditions during the process. The majority of the isolates were coccishaped (ex. Fig. 2D, E: pl. 5) and they grew after 1 to 7 d of incubation at 30°C. Three were pigment-producing bacteria, which produced red (Fig. 2A: pl. 5) yellow and Isolate brown pigments. BKBL4B.E showed features of EPS-producing bacteria (Fig. 2B: pl. 5), with a milky white, circular, raised entire margin with shining appearance colonies. The colony surface was sticky when taken with a loop. Two isolates were agarolytic (eg. Isolate BKBL6B.A, Fig. 2C: pl. 5), which was shown from the degradation level of the solid media after three days of incubation. Two isolates showed properties of bacteria putatively belonging to actinomycetes groups, (eg. Isolate BKBL8B.Ac, fig. 2F: pl. 5). Streptomyces has tough, leathery frequently pigmented colonies and has filamentous growth with aerial mycelium (AM) and substrate mycelium (SM). Streptomyces species have chains of spores (arthrospores) on the AM, which are normally absent from the SM (Bergey & Holt, 1994). There are four types of Streptomyces arthrospores according to Vobis (1997) as cited by Sawasdee (2012). Based on Vobis' classification, isolate BKBL7B.Ac type was retinaculiaperti, and BKBL8B.Ac one was verticillati.

Screening for antagonistic activity: The antagonistic activity test indicated the potential of *Streptomyces* sp. isolate BKBL8b.Ac to inhibit the growth of other bacteria. After eight days of incubation, isolates BKBL1B.P (yellow-pigmented bacteria) showed medium growth and BKBL3B.P showed very weak growth (Fig. 3A: pl. 6) compared to control (Fig. 3B: pl. 6). However, BE analysis indicated that both actinomycetes could produce bioactive secondary metabolites (Table 2).

RT	(min)					
	(min)	Area	MF	MW	Compound name	
Isolate BKBL7B.Ac						
1	8.092	5052200	C8 H10 O	122	Phenethyl alcohol	
2	9.675	10827840	C6 H8 O3	128	Dihydroxyethyl-1-furan	
3	11.542	7273042	C8 H8 O3	152	Vanillin	
4	12.85	8467686	C16 H32	224	Cyclohexadecane	
5	13.317	6225314	C13 H10 O	182	Benzophenone	
6	13.725	8430573	C13 H16 O2	204	Irgacure 184	
7	13.883	14434993	C14 H28	196	7-Tetradecene	
8	13.983	7124165	C18 H36	252	3-Octadecene	
9	14.108	19153221	C18 H38 O	270	Stenol / 1-octadecanol	
10	14.317	5564131	C15 H30 O2	242	Pentadecanoic acid	
11	14.375	7961095	C18 H34 O2	282	Oleic acid	
12	14.492	8830000	C11 H18 N2 O2	210	1,4-diaza-2,5-dioxo-3-isobutyl bicyclo[4.3.0]nonane	
13	14.65	11575603	C20 H30 O4	334	butyl octyl Ester	
13	14.808	5270347	C18 H36	252	3-Octadecene	
15	14.892	13249001	C16 H32 O2	256	Palmitic acid	
					1,4-diaza-2,5-dioxo-3-isobutyl	
16	15.042	21951901	C11 H18 N2 O2	210	bicyclo[4.3.0]nonane	
					1,4-diaza-2,5-dioxo-3-isobutyl	
17	15.125	28301973	C11 H18 N2 O2	211	bicyclo[4.3.0]nonane	
18	15.175	7768343	C16 H22 O4	278	<i>n</i> -butyl isobutyl phthalate	
19	15.217	16075783	C18 H38 O	278	Stenol / 1-octadecanol	
20	15.308	7783474	C18 H38 O	208	1,13-tetradecadien-3-one	
20	15.408	65643591	C14 H24 O	282	Oleic acid	
21	15.408	5244166	C17 H34 O2	282	Margaric acid	
22	15.45		C17 H34 O2 C19 H32	260	Etioallocholane/androstane	
	15.583	5450675	C19 H52 C16 H26 O3	266		
24 25	15.585	5225223		200	Dodecenyl succinnic anhydride	
		7076198	C19 H36 O2		Methyl oleate	
26	16.025	8062816	C12 H26 O	186 252	<i>n</i> -Dodecanol	
27	16.125	11266146	C18 H36		3-Octadecene	
28	16.225	12270518	C20 H42 O	298	<i>n</i> -Eicosanol	
29	16.575	6270550	C20 H34 O2	306	2, beta., 11.alpha-Dihydroxyverrucosane	
30	17.175	5381986	C24 H48	336	Cyclotetracosane	
31	17.292	10202502	C18 H36	252	Alpha-octadecene	
32	17.375	15935111	C22 H42 O4	370	Bis(2-ethylhexyl)adipate	
33	17.65	5906791	C14 H16 N2 O2	244	3-Benzyl-1,4-diaza-2,5- dioxobicyclo[4.3.0]nonane	
34	17.8	5965704	C16 H24	216	Tricyclo[8.6.0.0(2,9)]hexadeca-3,15-diene, trans-2,9-transoid-9,10-trans-1,10	
35	18.442	5086011	C24 H38 O4	390	Bis(2-ethylhexyl)Phtalate	
36	24.95	16149267	C14 H22 O	206	2,6 di-tert-butyl Phenol	
37	25.058	6306097	C23 H36 O2	344	1,4-Epoxynaphtalene-1(2H)- methanol,4,5,7-tris(1,1-dimethylethyl)-3,4- dihydro-	
38	25.142	13548174	C15 H22	202	Cuparene	
Isolate BKBL8B.Ac						
1	7.783	36882340	C5 H10 O4	134	Acetoglyceride/glycerol	
2	8.542	32725771	C5 H10 O4	134	1-acetoxy-2,3-dihydroxypropane	
3	8.775	23358079	C3 H8 O3	93	Glycerol	

Table 2: Compound name and chemical formula interpreted based on GC-MS spectral data of Isolates BKBL7B.Ac and BKBL8B.Ac. Abbreviation used: Retention Time (RT), Molecular Formula (MF), Molecular Weight (MW).

4	8.967	25126117	C3 H8 O3	92	Glycerol
5	9.133	34652436	C3 H8 O3	92	Glycerol
6	9.208	43411573	C11 H20 O	168	2-methylisoborneol
7	12.5	20762495	C11 H13 N O3	147	2-methoxy-n-(2-methoxyethyl)acetamide
8	13.408	26413053	C6 H13 N	99	3-Methylpiperidine
9	13.858	24438279	C9 H14 D2 N2 O3	200	(+)-3-(3-hydroxy(2-2H2)-butyrylamino)-2- piperidone
10	15.075	24553748	C16 H32 O2	256	Palmitic acid
11	15.217	21030078	C2 H48	336	1-tetradecene, 2-decyl
12	17.85	23741086	C10 H20 O2	172	2-(1-methylbutyloxy)-1-oxacyclohexane
13	20.117	20203218	C18 H22 O2	270	Gona-1,3,5(10)-trien-17-one, 3-methoxy-, (13.alpha)-

Actinomycetes isolates *compounds* analysis: The UV-Visible absorption spectra of the compounds showed absorption maxima at 234nm (BKBL7B.Ac [BE]), 206nm and 213nm (BKBL8B.Ac [BE]). This result was similar to the one reported by Saadoun et al. (1999), where experiments on the nature of the inhibitory metabolite produced by S. violaceusniger showed a maximum absorption in the UV region at 210-260nm.

The BE analysis using HPLC (Fig. 4: pl. 7) detected thirteen peaks from isolate BKBL7B.Ac, with a major one detected at 5.755 min. On the other hand, there were only seven peaks detected from the isolate BKBL8B.Ac BE sample. However, the retention time of the major peak was similar (5.914).

The GC analysis of both isolates' BE showed numerous peaks at various retention times (Fig. 5: pl. 7). There were thirty eight peaks detected from isolate BKBL7B.Ac. Two peaks with slightly higher relative area were obtained at the retention time of 15.128 and 17.377. The compounds retention times were compared with the Wiley7 Library compounds data base. The names of these unknown compounds were predicted based on the similarity of retention times of known compounds in this data base. Some of the compounds identified were those from the growth medium (eg. Glycerol), but we could not verify this due to difficulty in accessing the GC-MS equipment. In general, compounds identified (Table 2) antimicrobial features (Phenethyl had alcohol) (NCBI, 2014) as well as anti-(2.beta-11.alphainflammatory Dihydroxyverrucosane), pheromone-like substances (1,13-tetradecadien-3-one, Cuparene). other compounds and potentially useful in various industries, including printing (Benzophenone, Irgacure chemical materials (Dodecenvl 184). anhydride, Methyl succinnic oleate. Palmitic acid), food (Vanillin, Oleic acid, pharmaceuticals Margaric acid) and (Stenol, *n*-Dodecanol, *n*-Eicosanol, Etioallocholane, Pentadecanoic acid).

Isolate BKBL8B.Ac (BE) chromatogram result showed 13 peaks, with three dominants peaks at the retention time of 9.206, 15.074 and 15.215. The compound detected at 9.206 min was predicted as 2-Methylisoborneol, a compound known to be co-produced with geosmin, a signature compound produced by cyanobacteria, especially in the event of a harmful algal bloom (Hudnell, 2007). This went in line with the earthy odor emitted by this isolate when sporulating. Other compounds could also produced be useful in pharmaceutical and/or chemical industries (3-Methylpiperidine, 1-Acetoxy-2,3dihydroxypropane, [+]-3-[3-hydroxy[2-2H2]-butyrylamino]-2-piperidone). This isolate also produced Palmitic acid and 2-(1-Methylbutyloxy)-1-oxacyclohexane.

Fractionation and purification of Ethyl extract broths of these two isolates are

deemed useful to further confirm the production of these compounds with potential biotechnological applications. Other than that, future work should include comprehensive biological activity tests against pathogenic microbes.

Conclusion

The Wallacea biogeographical area is known as one of the global biodiversity hotspots. Despite many prior studies on bacteria producing compounds that were potentially utilized in biotechnological applications (Khasanah & Dewi, 2010 and references therein) in other parts of Wallacea, limited if any studies of bacteria producing compounds that could be useful in biotechnological applications have come from Ambon Bay. These initial results indicate that Ambon Bay waters and the surrounding area could harbour marine bacteria with features that may prove to be useful for biotechnological applications. Further, more intensive studies are needed elucidate comprehensive order to in biological and chemical profiles of the isolates obtained, and also to explore other types of marine bacteria, particularly those with potentially significant roles in the biochemical processes of the Ambon Bay environment.

Acknowledgments

This paper is dedicated to the late Leonardus B. S. Kardono, who had given valuable insight about its content. The work was funded by LIPI budget fiscal year 2013. The author wishes to thank Daniel Pelasula, Robert Alik and Dominggus Polnaja for sampling assistance and Junet F. da Costa for laboratory work assistance. The author also thanks two anonymous comments reviewers for their and suggestions that have helped improve this paper. This is contribution number 7 from Marine Microbiology and Biotechnology Laboratory, Deep Sea Research Center LIPI.

Literatures cited

Bergey, D. H. and J. G. Holt, 1994. Bergey's Manual of Determinative Bacteriology. 9th ed., Lippincott Williams & Wilkins: 605–609.

Hudnell, H. K. (ed.), 2007. Proceedings of the Interagency, International Symposium on Cyanobacterial Harmful Algal Blooms. Advances in Experimental Medicine & Biology. Retrieved from <www.cdph.ca. gov> on 09 August 2014.

Imhoff, J. F., A. Labes, and J. Wiese, 2011. Bio-mining the microbial treasures of the ocean: New natural products. *Biotechnology Advances*, 29: 468–482.

Jensen, P. R. and W. Fenical, 1996. Marine bacterial diversity as a resource for novel microbial products. *Journal of Industrial Microbiology*, 17: 346–351.

Krediet, J. C., K. B. Ritchie, M. Cohen, E. K. Lipp, K. P. Sutherland, and M. Teplitski, 2009. Utilization of Mucus from the Coral *Acropora palmata* by the Pathogen *Serratia marcescens* and by Environmental and Coral Commensal Bacteria. *Applied & Environmental Microbiology*, 75: 3851–3858.

NCBI, 2014. Pubchem compound. Retrieved from < www.pubchem.ncbi.nlm. nih.gov> on 02 August 2014.

Penesyan, A., S. Kjelleberg, and S. Egan, 2010. Development of novel drugs from marine surface associated microorganisms. *Marine Drugs*, 8:438–59.

Saadoun, I., K. M. Hameed, and A. Moussauui, 1999. Characterization and analysis of antibiotic activity of some aquatic actinomycetes. *Microbios*, 99:173–179.

Sawasdee, S. 2012. Screening for Antimicrobial Substance Producing Actinomycetes from Soil. *Master thesis, Prince of Songkla University.*

Shirling, E. B. and D. Gottlieb, 1966. Methods for characterization of Streptomyces species. *International Journal of Systematic Bacteriology*, 16: 313–340.

Tapilatu, Y., 2011. Marine procaryotes in Indonesia: research history and potential use in biotechnology. *Proceedings of the 1st International Symposium for Sustainable Humanosphere*, R & D *Unit for Biomaterials-LIPI*, Cibinong: 21–29.

Tapilatu, Y., 2012a. Exploration of proteorhodopsin producing bacteria from Maluku waters for solar cell application. *Proceedings of the Sinas Research Incentive National Seminar, Indonesian Ministry of Research and Technology*, Bandung: 39–43.

Tapilatu, Y., 2012b. Technical Report of L'Oréal-UNESCO National Fellowship for Women in Science 2011 research project. Retrieved from http://www.bit.ly/> on 09 August 2014.

Williams, P. G., 2009. Panning for chemical gold: marine bacteria as a source of new therapeutics. *Trends in Biotechnology*, 27:45–52.

PLATE 5

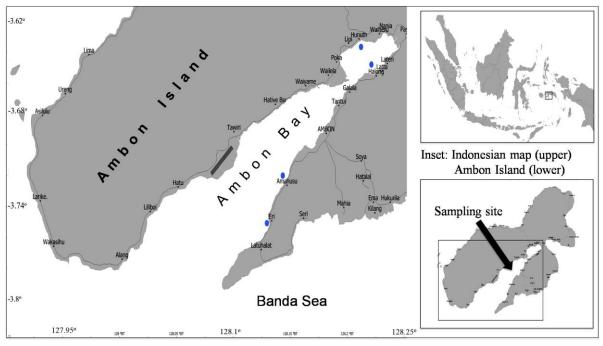
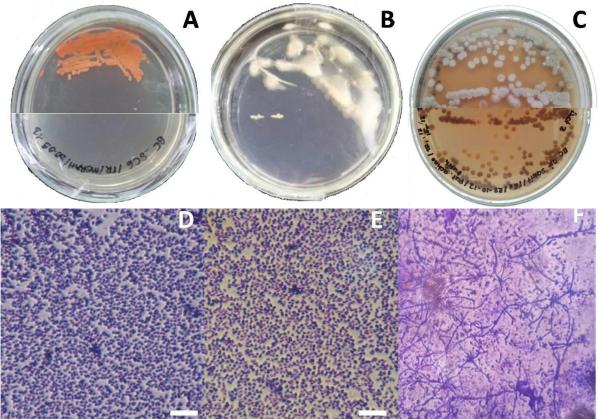
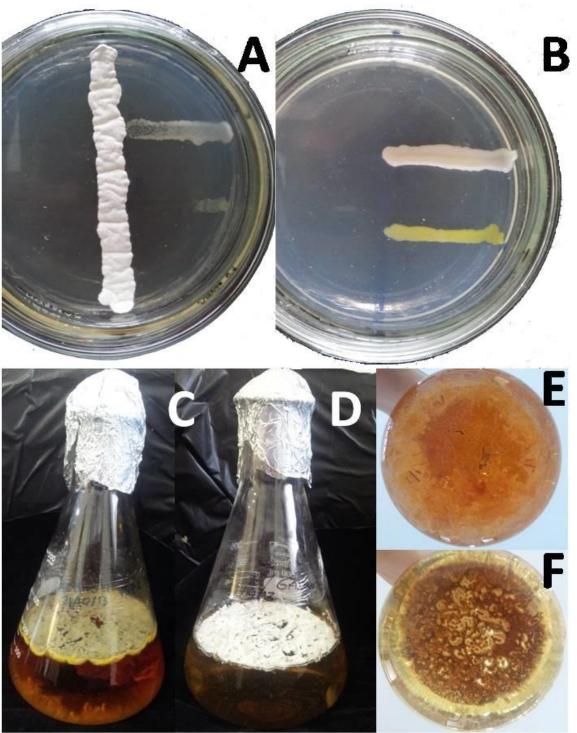




Figure 1: Map of Ambon Bay, Maluku Province. Blue dots indicate the four locations where samples were collected.

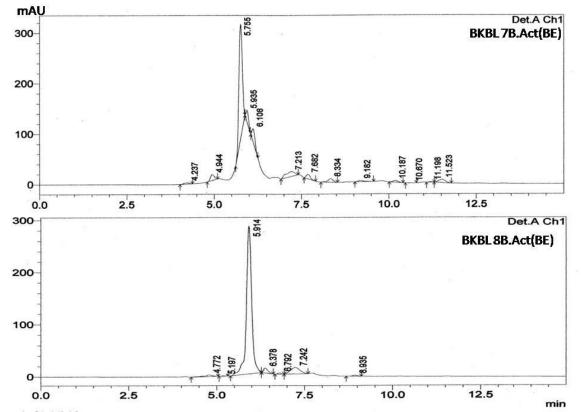

Figure 2: Colonies and cells/hyphae appearance under microscope of isolates obtained, namely: (**A** & **D**) BKBL 6B.A, (putative agarolytic bacteria), (**B** & **E**) BKBL 4B.E (putative EPS-producing bacteria) and (**C**) BKBL 8B.Ac (Actinomycetes). Note that isolate BKBL 8B.Ac showed grayish white aerial mycelium (C, upper side), whereas it substrate one was brown (C, lower side). Cells were stained with Crystal violet solution (see Material and method section for details). Scale bar: $2 \mu m$.

PLATE 6

Figure 3: Antagonistic activity test of an actinomycete isolate BKBL8B.Ac against other isolates after 8 days of incubation on (**A**) GASWA and (**B**) control plate. Actinomycetes isolates incubated in 300 ml liquid media for compounds studies (after 30 days), (**C**) BKBL7B.Ac on GASWA and (**E**) its view from the bottom of the flask; (**D**) Isolate BKBL 8B.Ac on ISP2 and (**F**) its view from the bottom of the flask.

PLATE 7

Figure 4: HPLC chromatogram of isolates BKBL 7B.Ac and BKBL 8B.Ac broths extracted with Ethyl actetate (BE).

Figure 5: GC-MS chromatogram of isolates BKBL 7B.Ac and BKBL 8B.Ac broths extracted with Ethyl actetate (BE).