SHORT COMMUNICATION

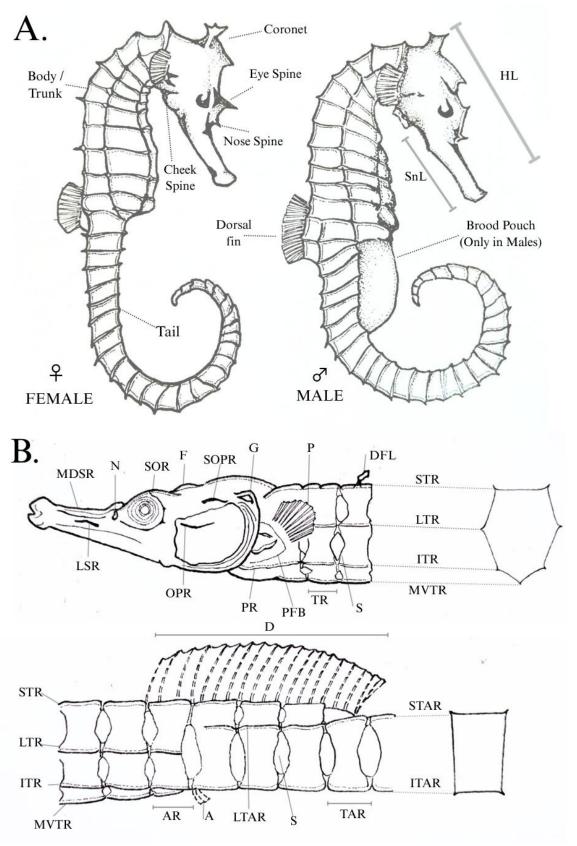
TAPROBANICA, ISSN 1800–427X. Vol. 14, No. 02 (2025): pp. 313–317.

Published by Research Center for Climate Change & Faculty of Mathematics & Natural Sciences, Universitas Indonesia, Depok 16424, INDONESIA.

© distributed under Creative Commons CC-BY 4.0

http://www.taprobanica.org

https://doi.org/10.47605/tapro.v14i2.387



OPEN ACCESS

Seahorses and pipefishes of Sri Lanka (Teleostei: Syngnathidae)

Sri Lanka, situated within the biodiversity-rich Indo-Pacific, is recognized as a hotspot for marine and freshwater fish diversity. Although numerous new teleost species have been described from the island in recent decades (Pethiyagoda & Sudasinghe 2021), the family Syngnathidae, which includes seahorses, pipefishes, and pygmy pipehorses, remains poorly documented. Despite early taxonomic contributions, such as those by Duncker (1910), who described the pipefish species Siokunichthys southwelli and Microphis ocellatus from 'Ceylon', modern systematic studies on Sri Lanka's syngnathid fauna are lacking. Given the morphological complexity of this group and the potential for cryptic species, a comprehensive taxonomic synthesis is overdue. Accurate field identification of syngnathid species in Sri Lanka is further complicated by the lack of regionspecific diagnostic tools and the morphological conservatism typical of the group. Foundational works, including Dawson (1985), provide broad Indo-Pacific coverage but are not tailored to the local fauna. The distinct morphology of syngnathids, characterized by elongate bodies, reduced fins, and cryptic traits, can hinder differentiation among closely related congeners (Lourie et al. 2004, Dawson 1985). Moreover, recent advances in molecular systematics have revealed that several syngnathid taxa previously regarded as single species may represent distinct complexes of genetically morphologically similar lineages, a pattern increasingly evident in other teleost groups across the region (Hamilton et al. 2017, Stiller et al. 2022). In light of these challenges, the development of a comprehensive, Sri Lankaspecific checklist and identification key is a necessary first step toward resolving taxonomic uncertainties and supporting future biodiversity assessments.

Members of the Syngnathidae occupy a broad range of habitats in temperate and tropical waters of the Atlantic and Indo-Pacific Oceans (Lourie et al. 2004, Dawson 1985). Seahorses (genus Hippocampus Rafinesque, 1810) are typically associated structurally with complex environments, including seagrass beds, coral reefs, mangroves, estuaries, and sandy or rubble substrates (Foster & Vincent 2004, Perera et al. 2017). Pipefishes, though more elongate and generally lacking the ornamentation seen in seahorses, occur across a similarly diverse range of habitats. While most are found in marine or estuarine environments, some species are adapted to freshwater and exhibit considerable variation in reproductive mode and ecological specialization (Dawson 1985, De Silva et al. 2015). To address the identification difficulties encountered in fieldwork and to summarize the syngnathid research conducted thus far on the island as an early precursor to broader exploration, we present here, for the first time, a revised checklist and a comprehensive identification key to the species of this family in Sri Lanka, along with their distributional records current conservation status. Insights discussed in this article are based on fieldwork conducted between 2022 and 2024, which involved direct observations and interviews with local fishing communities across the island. Additionally, publications related to Syngnathidae fishes of Sri Lanka up to February 2024 were gathered and thoroughly reviewed. Other reliable sources cited and referred to in the IUCN Red List (2022) and the Convention on International Trade in Endangered Species (CITES; Appendix II) were also consulted.

Figure 1. (A) Morphology of a seahorse. HL: Head length; SnL: Snout length; (**B**) Lateral and cross-sections of a typical pipefish depicting selected morphological features as presented in Dawson (1985): A-anal fin; AR-anal ring; D-dorsal fin; DFL-dermal flap; F- frontal ridge; G-gill opening; IT AR- inferior tail ridge; TR-inferior trunk ridge; LSR-lateral snout ridge; LTAR-lateral tail ridge; LTR-lateral trunk ridge; MDSR-median dorsal snout ridge; MVTR-median ventral trunk ridge; N-naris; OPR-opercular ridge; P-pectoral fin; PPB-pectoral-fin base; PR-pectoral ring (1st trunk ring); S-scutellum; SOPR- supra-opercular ridge; SOR-supraorbital ridge; STAR-superior tail ridge; TR-trunk ring.

Furthermore, we examined the latest IUCN Red List assessments and FishBase profiles <www.fishbase.se> (Froese & Pauly 2024) for each species to verify the information presented. The identification key was formulated based on the morphological characters presented in Dawson (1985) and Lourie *et al.* (1999, 2004).

We confirmed the presence of 21 valid syngnathid species representing 13 genera in Sri Lanka, occurring across freshwater and marine habitats (Sup. Table 1). Among them, only two species (10% of the total Syngnathidae recorded) are seahorses: Hippocampus kuda (Bleeker, 1852) and H. spinosissimus Weber, 1913, while the remaining 19 species (90%) are pipefishes. The recorded pipefishes represents 12 genera: three species each from Microphis Kaup, 1853 and Halicampus Kaup, 1856 (each representing 16% of total pipefishes recorded); two species each (11%) from Corythoichthys Kaup, 1853, Doryrhamphus Kaup, 1856 and Trachyrhamphus Kaup, 1853 and one species (~5%) each from Hippichthys Bleeker, 1849, Ichthyocampus Kaup, 1853, Siokunichthys Herald, 1953, Cosmocampus Dawson, 1979, Nannocampus Günther, 1870, Phoxocampus Dawson, 1977 and Syngnathoides Bleeker, 1851 (Sup. Table 1).

The identification key for species is given below. This key was developed especially for use in the field based on easily distinguishable morphological characters (Fig. 1). Apart from two confirmed seahorse species, we include three other species (*Hippocampus histrix* Kaup, 1856; *H. kelloggi* Jordan & Snyder, 1901 and *H. trimaculatus* Leach, 1814), which have multiple sighting records from the Indian Ocean and nearby regions (see Lourie *et al.* 2004) (including unverified sightings from Sri Lanka), in the key to facilitate identification if they are encountered in Sri Lankan waters.

Here we present the formulated dichotomous identification key as follows:

1.	Head directed at a distinct angle to the
	longitudinal body axis (usually > 70°) 2
	– Head and body form a straight line 6
2	Dorsal region/body is smooth and lacks spines
	– Dorsal region has body spines 5
3.	Prominent 'hook'-shaped cheek and eye spines;
	three dark spots in the dorsal region

	- Cheek and eye spines are not 'hook'-shaped; no distinct dark spots in the dorsal region 4
4.	Narrow body structure; medium-high distinct coronet
5.	Snout spine is low or absent; single or double cheek spines Hippocampus spinosissimus – Snout spine is high; single cheek spine
6.	Presence of a caudal fin (sometimes rudimentary)
	- Caudal fin absent in sub-adults and adults
7.	Anal fin absent
8.	Trunk rings 8, total rings 57–58
	- Trunk rings 18-19, total rings 66-68
9.	
	- Caudal fin rays typically not 9 14
10.	Trunk rings 21–24; total rings 64–86
11.	Snout length 2.2–2.8 in HL; snout depth averages 3.9 in snout length
	- Snout length 1.9-2.1 in HL; snout depth averages 5.9 in snout length
12.	HL 4.2–5.3 in SL; pectoral-fin rays usually 20–21 (19–23)
13.	Dorsal-fin rays 37–42; total rings (15–17 + 27–32) = 42–49
14.	Superior trunk-tail ridge continuous
15.	Lateral trunk ridge deflected ventrally near the anal ring; total rings (14–15 + 37–40) = 51–55
	- Lateral trunk ridge not deflected ventrally near the anal ring; total rings (15–16 + 25–33) = 40–49 (never exceed 50) . <i>Phoxocampus diacanthus</i>

- Cheek and eye spines are not 'hook'-shaped;

17

16. Inferior trunk and tail ridges continuous 1 - Inferior trunk and tail ridges discontinuous 20
17. Lateral snout ridge absent
Cosmocampus investigatori - Lateral snout ridge present or implied 18
18. Lateral trunk ridge straight or deflected ventral near the anal ring Hippichthys heptagonu. – Lateral trunk ridge confluent with the inferio tail ridge
19. Trunk rings modally 15; no prominent latera stripes on head; body usually with broad brown bars
20.HL 7.7–10.9 in SL; dorsal-fin rays 19–21 2 – HL 3.5–5.3 in SL; dorsal-fin rays 16–30 22
 21. Tail rings 21–23
23.HL 10.2–13.0 in SL; snout depth 1.2–2.7 in SL pectoral-fin rays 12–14

Note: ¹No verified sightings from Sri Lanka to date; HL = Head Length; SL = Snout Length

Distribution. Perera et al. (2017) recorded Hippocampus kuda (referred to as H. fuscus Ruppell 1838, now a junior synonym to H. kuda according to Lourie et al. 2016) and H. spinosissimus from Puttalam Lagoon, an area with abundant seagrass. Specimens resembling H. kuda were observed by the first author along the southern coast (Polhena), though specieslevel identification could not be confirmed. Several pipefish species have also been recorded from inland waters, including Hippichthys heptagonus from Bolgoda Lake, reported by Herath et al. (2014); Microphis ocellatus (type locality: Wakwella, Galle; Duncker 1910) from Horana, Pahiyangala, and Kitulgala; and M. brachvurus from coastal areas of the

southwestern regions, as documented by Pethiyagoda (1991) and De Silva et al. (2015).

Here, we report five additional marine syngnathid species from Sri Lanka that were not included in the most recent National Red List Assessment (Kumara 2012). In addition to the 21 confirmed species, Kumara (2012) reported an unidentified Doryrhamphus specimen from southern Sri Lanka, originally referenced from Perera and Weerakkody (2004). As this record lacks definitive identification, it has not been included in the present checklist. It is also noteworthy that, based on currently available literature, there are no confirmed records of ghost pipefishes (family Solenostomidae) or pipehorses (e.g., Acentronura, Idiotropiscis) from Sri Lankan waters.

All confirmed seahorses are classified as Vulnerable (VU), representing 10% of confirmed syngnathids. Approximately 76% of the confirmed Syngnathidae, 16 pipefish species, are listed as Least Concern (LC): Corythoichthys flavofasciatus, Hippichthys amplexus. C. heptagonus, Doryrhamphus excisus, D. janssi, Cosmocampus investigatoris, Halicampus grayi, H. mataafae, H. spinirostris, Nannocampus pictus, Phoxocampus diacanthus, Ichthyocampus carce, Microphis brachyurus, M. cuncalus, Syngnathoides biaculeatus, and Trachyrhamphus longirostris. The remaining three pipefish species—Microphis ocellatus, Siokunichthys southwelli, and Trachyrhamphus serratus—are classified as Data Deficient (DD), comprising 14% of the total confirmed species. The high proportion of Least Concern pipefishes contrasts with the Vulnerable status of seahorses. reflecting differential threats and collection pressures within the family.

Seahorse species face significant threats from illegal trade, particularly for use in traditional Chinese medicine. In Sri Lanka, additional pressures arise from collection for ornamental jewelry and the aquarium trade, although these activities do not appear to occur at a large scale (pers. obs.). Continued research, systematic monitoring, and regulatory oversight essential to support the conservation of these ecologically important and increasingly vulnerable species within Sri Lanka's marine and freshwater ecosystems.

Acknowledgements. We thank A. Vincent and M. Correia (IUCN/SSC/Seahorse, Pipefish, and Seadragon Specialist Group) for providing valuable reference materials; Y. Bandara for illustrations; S. Randeniya for field assistance; Vincent Haÿ (Sorbonne University, France), Graham A Short (California Academy of Sciences, USA), and Upali S. Amarasinghe (University of Kelaniya) for reviewing the manuscript.

Supplemental data

https://doi.org/10.47605/tapro.v14i2.387

Literature cited

- Dawson, C.E. (1985). *Indo-Pacific Pipefishes (Red Sea to the Americas)*. Gulf Coast Research Laboratory Publications, Ocean Springs (13): 230pp.
- De Silva, M., N. Hapuarachchi & T. Jayarathne (2015). *Sri Lankan Freshwater Fishes*, 1st Edition. Wildlife Conservation Society, Galle: 219pp.
- Duncker, G. (1910). On some syngnathids ("pipefish") from Ceylon. *Spolia Zeylanica*, 7(25): 25–34.
- Foster, S.J. & A.C.J. Vincent (2004). Life history and ecology of seahorses: implications for conservation & management. *Journal of Fish Biology*, 65(1): 1–61.
- Froese, R. & D. Pauly (eds.) (2024). FishBase. WorldFish Center. <www.fishbase.se> Accessed on 15 February 2024.
- Hamilton, H., N. Saarman, G. Short et al. (2017). Molecular phylogeny and patterns of diversification in syngnathid fishes. Molecular phylogenetics & Evolution, 107: 388-403.
- Herath, T., H. Jayaneththi, H. Hareschandra & P. Madurapperuma (2014). Some notes on the belly pipefish *Hippichthys heptagonus* Bleeker, 1849 from Bolgoda Lake, western Sri Lanka. *Sri Lanka Naturalist*, 7(3&4): 15–17.
- IUCN (2022). International Union for Conservation of Nature. *The IUCN Red List of Threatened Species*, Version 2022-2. www.iucnredlist.org Accessed on 15 February 2024.
- Kumara, P.B.T.P. (2012). Provisional checklist of marine fish of Sri Lanka. Pp. 411–430. *In*: D.K. Weerakoon & S. Wijesundara (*eds.*), *The National Red List 2012 of Sri Lanka: Conservation Status of the Fauna & Flora*. Ministry of Environment, Colombo.
- Lourie, S.A., R.A. Pollom & S.J. Foster (2016). A global revision of the seahorses *Hippocampus* Rafinesque, 1810 (Actinopterygii: Syngnathiformes): taxonomy & biogeography with recommendations for further research. *Zootaxa*, 4146(1): 1–66.

- Lourie, S.A., S.J. Foster, E.W.T. Cooper & A.C.J. Vincent (2004). *A Guide to the Identification of Seahorses*. Project Seahorse & TRAFFIC North America. University of British Columbia & World Wildlife Fund, Washington DC: 114pp.
- Lourie, S.A., A.C.J. Vincent & H. Hall (1999). Seahorses: An Identification Guide to the World's Species & Their Conservation. Project Seahorse, London: 214pp.
- Perera, N. & P. Weerakkody (2004). *A Biodiversity Status Profile*. Occasional Papers of IUCN Sri Lanka, No. 5. IUCN Sri Lanka, Colombo: 54pp.
- Perera, N., D.D.G.L. Dahanayaka & S. Udagedara (2017). Habitat preference and population structure of two data-deficient seahorse (Syngnathidae) species. *Sri Lanka Naturalist*, 10(1&2): 13–19.
- Pethiyagoda, R. (1991). Freshwater Fishes of Sri Lanka. Wildlife Heritage Trust of Sri Lanka, Colombo: 362pp.
- Pethiyagoda, R. & H. Sudasinghe (2021). *The Ecology & Biogeography of Sri Lanka: A Context for Freshwater Fishes*. WHT Publications (Private) Limited, Colombo: 428pp.
- Stiller, J., G. Short, H. Hamilton *et al.* (2022). Phylogenomic analysis of Syngnathidae reveals novel relationships, origins of endemic diversity, and variable diversification rates. *BMC biology*, 20(1): 75.
 - Submitted: 1 Jan 2025, Accepted: 22 Jul 2025 Subject Editor: Upali S. Amarasinghe
 - J. Bandara^{1, 2}, M.P. Gunawardena^{3,4} & C. Weerakoon³*
 - ¹ Department of Fisheries & Aquaculture, Faculty of Fisheries & Marine Sciences & Technology, University of Ruhuna, Matara, Sri Lanka
 - ² Wildlife Conservation Society Galle, Biodiversity Research & Education Center, Hiyare Reservoir, Galle, Sri Lanka
 - ³ Faculty of Science, Horizon Campus, Knowledge City Malabe, KCM Drive, Off Millennium Road, Malabe 10115, Sri Lanka
 - ⁴ Wildlife and Nature Protection Society, No. 86, Rajamalwatte Road, Battaramulla, Sri Lanka E-mail: chamodyalk5@gmail.com