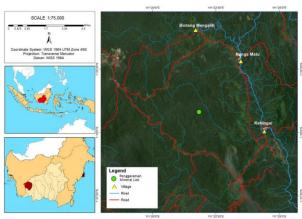
SHORT COMMUNICATION

TAPROBANICA, ISSN 1800–427X. Vol. 14, No. 02 (2025): pp. 318–322.
 Published by Research Center for Climate Change & Faculty of Mathematics & Natural Sciences, Universitas Indonesia, Depok 16424, INDONESIA.
 © distributed under Creative Commons CC-BY 4.0
 http://www.taprobanica.org
 https://doi.org/10.47605/tapro.v14i2.388


OPEN ACCESS

Interference avoidance by wild ungulates at a mineral lick, Central Kalimantan

Mineral licks are small, mineral-rich sites within forests that wildlife visit to supplement their mineral intake by licking or consuming soil (Montenegro 2004, Matsubayashi & Lagan 2014). These licks are essential sources of minerals such as sodium, potassium, calcium, and magnesium, which support osmoregulation, toxin neutralization, and the development of bones and muscles (Kreulen & Jager 1984, Brightsmith & Muñoz-Najar 2004, Abrahams 2012, Sim et al. 2020). Due to mineral deficiencies in plant foliage, wild herbivores often resort to geophagy (Ayeni 1972). The Belantikan Hulu area, within the Arabela landscape of the Schwaner Mountains in Central Kalimantan, Indonesia, comprises lowland forest dominated by Dipterocarpaceae species such as Dipterocarpus fagineus and Shorea laevis, along with Eusideroxylon zwageri. There are several active mineral licks in this landscape (Sadikin et al. 2009, Dewi et al. 2020, Wicaksono et al. 2022).

Camera traps have made wildlife monitoring at mineral licks more effective, allowing non-invasive and continuous observation (Kühl *et al.* 2011, Ancrenaz *et al.* 2012). Mammals like ungulates, primates, and rodents, as well as some birds, frequently visit mineral licks (Montenegro 2004, Link *et al.* 2011, King *et al.* 2016). Despite their small size, these sites can be biodiversity hotspots; for example, 28 medium-to-large mammal species, including Bornean clouded leopard (*Neofelis diardi borneensis*), were recorded at four mineral licks in Deramakot Nature Reserve, Sabah (Matsubayashi & Lagan 2014). In Belantikan Hulu, camera traps recorded 16 wild species at mineral licks, including

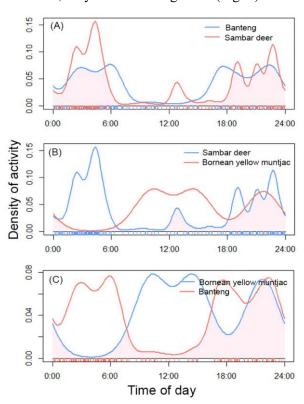
ungulates, but no top predators such as the Bornean clouded leopard (Wicaksono et al. 2022). As a limited resource, mineral licks may be sites of ecological competition. This can be exploitation competition, where one species depletes resources used by another, interference competition, involving exclusion (Putman 1994). Sympatric species may avoid such conflicts through spatial or temporal niche partitioning (Zanni et al. 2021). This study analyzes ungulate presence, temporal activity, and co-occurrence at a mineral lick in Belantikan Hulu to assess whether temporal partitioning suggests avoidance of interference. Ungulates, as frequent visitors, offer key insights into resourcesharing dynamics at these vital but scarce forest resources (Matsubayashi et al. 2007, Tobler et al. 2009). This study was conducted at the Penggaraman mineral lick (01°34'11.654"S, 111°21'50.148"E) in the Belantikan Hulu forest, Lamandau Regency, Central Kalimantan, Indonesia (Fig. 1).

Figure 1. Map of the study area showing the location of Penggaraman Mineral Lick, Belantikan Hulu forest area, Central Kalimantan

The Belantikan landscape extends from the Arut Belantikan region to Bukit Rongga and

Bukit Perai in West Kalimantan, covering approximately 200,000 ha, including 43,000 ha of protected forest. Within this, PT Karda Traders has designated 1,040 ha as a banteng (Bos javanicus) conservation area. Belantikan Hulu is a biodiversity hotspot and a priority habitat for banteng and supports the largest Bornean Orangutan (Pongo pygmaeus wurmbii) population outside formal conservation areas (Sapari et al. 2018, Wich et al. 2004). Despite its ecological value, wildlife faces pressure from local hunting, with species like sambar (Rusa unicolor), bearded pig (Sus barbatus), and banteng commonly targeted (Dewi et al. 2020). Although banteng hunting has reportedly ceased since 2015 due to customary regulations, hunting of other mammals persists.

Species data were obtained using a Bushnell Natureview HD camera trap. The camera was mounted 150 cm above ground, in front of two salt springs 30 cm apart, forming a 6.68 m² puddle. The site, though within dense forest, features an open area with grass and reeds. Soil analysis revealed a top layer of 83% sand, 8% clay, and 3% dust to 15 cm depth, underlain by gravel ("batu sopanan") and rock plates. The camera operated without bait from July 2017 to March 2018 (mainly wet season) and was checked monthly for maintenance and battery replacement.

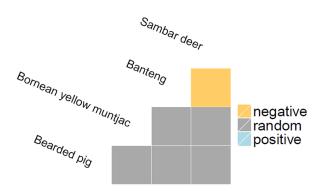

Relative Abundance Index (RAI). Camera trap photos were processed using Picture Information Extractor to rename files, identify species, and determine independent events. Consecutive images of the same species within 30 minutes were treated as a single event (O'Brien et al. 2003). The number of independent photos per ungulate species was used to calculate the RAI (relative abundance per 100 trap days).

Temporal activity patterns and overlap. Camera trap timestamps were used to analyze daily activity patterns and temporal overlap among species. Data were processed in R using the 'overlap' package, which applies Kernel Density Estimation (KDE) to generate activity curves and calculate overlap coefficients (Meredith *et al.* 2017, Setiawan *et al.* 2016). Overlap values range from 0 (no overlap) to 1 (complete overlap), with values ≥ 0.7 considered significant. These analyses quantify how species share access to the mineral lick over a 24-hour period.

Co-occurrence patterns. Species relationships were assessed using the 'co-occur'

package in R (Griffith *et al.* 2016). This probabilistic analysis identifies positive, negative, or random associations based on species co-occurrence frequencies (Veech 2013). Daily presence—absence data (1 = present, 0 = absent) were used as replicates.

A total of ten mammal species were recorded at the mineral lick over 282 survey days. Ungulates dominated, accounting for 1,430 out of 1,598 independent photographs (89.4%). Among 10 species photographed at the mineral lick sites, only four were ungulates (Fig. 2).


Figure 2. Temporal activity and overlap of three ungulates at a mineral lick: **(A)** Banteng-Sambar, **(B)** Sambar-Bornean yellow muntjac, **(C)** Banteng-Bornean yellow muntjac. Ungulate activity is represented as solid lines, and temporal overlap is represented as shaded areas.

Among these, two species showed the highest relative abundance: banteng, with 253.19 photos/100 active days, and sambar, with 251.42 photos/100 active days. The remaining ungulates and other mammals were recorded at much lower frequencies (Table 1). Banteng and sambar spend the longest time visiting the mineral lick, namely 14–15 hours in 24 hours. Bornean yellow muntjac (*Muntiacus atherodes*) spent a maximum of 3 h visiting the mineral lick in 24 hours, while the temporal activity patterns of the bearded pigs were not clear due to the small amount of data available.

Table1. Ungulate species in Mineral Lick; EN = endangered; VU = vulnerable; NT = near threatened; number of independent camera-trap records (N), Relative abundance index (RAI).

Family	Name	N	RAI
Bovidae	Banteng Bos javanicus ^{EN}	71	253
Cervidae	Sambar <i>Rusa unicolor</i> ^{VU}	709	251.4
Cervidae	Bornean yellow muntjac <i>Muntiacus atherodes</i> ^{NT}	5	1.8
Suidae	Bearded pig Sus barbatus ^{VU}	2	0.71

The density of visiting banteng increases from 17.00 to 08.00 h (nocturnal), with two peak periods (periods with the highest number of visits recorded in the 100 days) at 01.00 and 06.00 h. Sambar show more activity during the night (16.00–06.00 h) but with a peak visitation at 04.00 h. For Bornean yellow muntjac, the density of visiting activity is at 09.00–12.00 h (diurnal), with a peak of visits at 11.00 h. The degree of overlap between banteng and sambar is the highest (Δ_1 =0.689). Meanwhile, banteng and Bornean yellow muntjac (Δ_1 =0.41); sambar and Bornean yellow muntjac (Δ_1 =0.35) have a lower degree of overlap (Fig. 3).

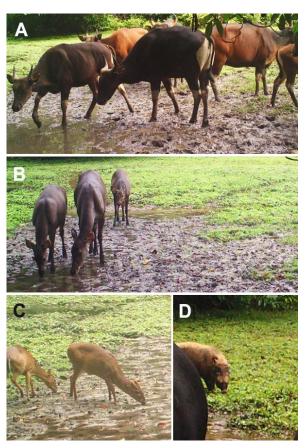


Figure 3. Heat map showing positive and negative species associations determined by a probabilistic co-occurrence model for ungulates. Species names are positioned to indicate columns and rows representing their pairwise relationships with other species.

The results of the probabilistic analysis show mostly random patterns of occurrence among ungulates based on their daily visits. From the heat map of ungulates, there is a negative association between banteng and sambar, and there is no positive association for ungulates in the mineral lick area.

This study shows that various ungulate species frequently visit mineral licks, though their visitation rates vary. Herbivore-frugivores

like banteng, sambar, and yellow muntjac visit more often than omnivores such as bearded pigs, which rely less on licks due to a broader diet (Matsubayashi et al. 2007, Payne & Davies 1987). Mineral licks are especially important in Kalimantan forests, where the distributions of large mammals correlate more with mineral availability than forest type (Matsuda et al. 2015). Herbivores seek sodium, often deficient in tropical vegetation, prompting regular lick visits (Chong et al. 2005, Klaus & Schmidt 1998). Their primary food plants, rich in potassium, have diuretic effects, increasing sodium loss. Mineral licks in Belantikan Hulu contain significantly higher levels of sodium (500 mg/kg) and calcium (900 mg/kg) than nearby soils (Wicaksono et al. 2022), making them critical mineral sources.

Figure 4. Ungulates were recorded by camera trap at the Penggaraman mineral lick; **(A)** Banteng, **(B)** sambar, **(C)** Bornean yellow muntjak, and **(D)** bearded pig.

Banteng and deer showed high temporal overlap in mineral lick visits, likely due to shared nocturnal habits. In contrast, muntjac, being diurnal, had lower overlap—possibly as an avoidance strategy (Tan *et al.* 2018). Cooccurrence analysis showed a negative

association between banteng and deer, with most visits occurring on different days, suggesting temporal partitioning to reduce direct competition. Camera trap images captured interference between the two species, indicating no clear dominance (Fig. 4).

Despite covering only 0.35 ha in the 200,000 ha Belantikan Forest, mineral licks serve as key activity hubs, increasing the potential for competition. While this study focused on temporal patterns, spatial segregation also likely plays a role in species coexistence (Tobler et al. 2009, Zanni et al. 2021). One limitation is the use of a single camera, which restricts observation of pre-entry behaviour or avoidance. Future studies should deploy multiple cameras from the edge to the centre of the lick to better understand species interactions. Additionally, factors such as predator presence and human disturbance may influence ungulate activity patterns. For example, human activity has been shown to alter mammal behaviour and reduce mineral lick use (Grav & Phan 2011, Blake et al. 2013, Laundré et al. 2010, He et al. 2022).

Acknowledgements. We thank the staff of Yayorin for assistance; R. Saab for improving the earlier draft; Juan Herrero (University of Zaragoza, Spain), Jose D. Anadón (Instituto Pirenaico de Ecología, Spain), and Rory Putman (UK) for reviewing the manuscript.

Literature Cited

- Abrahams, P.W. (2012). *Essentials of medical geology*, revised edition. Springer, Dordrecht: 454pp.
- Ancrenaz, M., A.J. Hearn, J. Ross et al. (2012). Handbook for wildlife monitoring using camera traps. BBEC II Secretariat, Sabah: 71pp.
- Ayeni, S.O. (1972). Chemical analysis of some soil samples from natural licks. *East Africa Wildlife Journal*, 2(4): 16–23.
- Blake, J.G., D. Mosquera & J. Salvador (2013). Use of mineral licks by mammals and birds in hunted and non-hunted areas of Yasuní National Park, Ecuador. *Animal Conservation*, 16(4): 430–437.
- Brightsmith, D.J. & R.A. Muñoz-Najar (2004). Avian geophagy and soil characteristics in southeastern Peru. *Biotropica*, 36(4): 534–543.
- Chong, M.H.N., S.H. Tang & S. Suksuwan (2005). Management recommendations for wildlife saltlicks with particular reference to Sira Air Hangat at Ulu Muda Forest Reserve, Kedah. World Wide Fund for Nature Malaysia, Selangor: 23pp.

- Dewi, M.C., I. Sapari & E. Santoso (2020). Threats and conservation efforts of the last remaining banteng (*Bos javanicus lowi*) in unprotected areas at Belantikan Hulu, Central Kalimantan. *Media Konservasi*, 25(1): 64–72.
- Gray, T.N.E. & C. Phan (2011). Habitat preferences and activity patterns of the larger mammal community in Phnom Prich Wildlife Sanctuary, Cambodia. *The Raffles Bulletin of Zoology*, 59(2): 311–318.
- Griffith, D.M., J.A. Veech & C.J. Marsh (2016). Cooccur: Probabilistic species co-occurrence analysis in R. *Journal of Statistical Software*, 69(2): 1–17.
- He, X., Z. Wen, Y. Wang *et al.* (2022). Ecological significance and risks of mineral licks to mammals in a nature reserve on the Eastern Qinghai-Tibet Plateau. *Ecosystem Health & Sustainability*, 8(1): 2052764.
- King, A., A.M. Behie, H. Naven *et al.* (2016). Patterns of salt lick use by mammals and birds in northeastern Cambodia. *Cambodian Journal of Natural History*, 1: 40–50.
- Klaus, G. & B. Schmidt (1998). Geophagy at natural licks and mammal ecology: A review. *Mammalia*, 62(4): 482–489.
- Kreulen, D.A. & T. Jager (1984). Significance of soil ingestion in the utilization of arid rangelands by large herbivores, with special reference to natural licks on the Kalahari pans. Pp. 204–221. *In*: F.M.C. Gilchrist & R.I. Mackie (eds.), *Proceedings of the International Symposium on Herbivore Nutrition in the Subtropics & Tropics*. South African Society of Animal Production, Johannesburg.
- Kühl, H., F. Maisels, M. Ancrenaz *et al.* (2011). *Panduan survei dan pemantauan populasi kera besar*. IUCN Species Survival Commission, Gland, Switzerland: 36pp.
- Laundré, J.W., L. Hernández & W.J. Ripple (2010). The landscape of fear: Ecological implications of being afraid. *Open Ecology Journal*, 3: 1–7.
- Link, A., N. Galvis, E. Fleming *et al.* (2011). Patterns of mineral lick visitation by spider monkeys and howler monkeys in Amazonia: Are licks perceived as risky areas? *American Journal of Primatology*, 73(4): 386–396.
- Matsubayashi, H. & P. Lagan (2014). Natural saltlicks and mammals in Deramakot: Their importance and why they should be conserved. Sabah Forestry Department, Sandakan: 60pp.
- Matsubayashi, H., P. Lagan, N. Majalap *et al.* (2007). Importance of natural licks for the mammals in Bornean inland tropical rain forests. *Ecological Research*, 22: 742–748.
- Matsuda, I., M. Ancrenaz & Y. Akiyama (2015). Natural licks are required for large terrestrial

- mammals in a degraded riparian forest, Sabah, Borneo, Malaysia. *Ecological Research*, 30: 191–195.
- Meredith, M. & M. Ridout (2017). Overlap: Estimates of Coefficient of Overlapping for Animal Activity Patterns (R package version 0.2-4). CRAN. <cran.r-project.org> Accessed on 15 February 2024.
- Montenegro, O.L. (2004). *Natural licks as keystone* resources for wildlife and people in Amazonia. PhD thesis, University of Florida, Gainesville, USA: 211pp.
- O'Brien, T.G., M.F. Kinnaird & H.T. Wibisono (2003). Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. *Animal Conservation*, 6(2): 131–139.
- Payne, J. & G. Davies (1987). *A faunal survey of Sabah*. WWF Malaysia, Kuala Lumpur: 95pp.
- Putman, R.J. (1994). *Community ecology*. Chapman & Hall, London: 178pp.
- Sadikin, L.A., I. Sapari, Kurniadi et al. (2009). Belantikan conservation programme: Sebuah proses menuju masa depan. Pustaka Yayorin, Pangkalan Bun: 126pp.
- Sapari, I., A. Alifianto, R. Pamungkas *et al.* (2018). *Kajian bioekologi dan etnozoologi mengenai banteng Kalimantan (Bos javanicus lowi)*. Yayasan Orangutan Indonesia, Pangkalan Bun: 83pp.
- Setiawan, E., H. Murfi & Y. Satria (2016). Analisis penggunaan metode kernel density estimation pada loss distribution approach untuk risiko operasional. *Jurnal Matematika Integratif*, 12(1): 11–18.
- Sim, S.F., J.M. Azlan, N.A.H.M.A. Rahman *et al.* (2020). Mineral characteristics of tropical salt licks in Sarawak, northwest Borneo Island. *Journal of Sustainability Science & Management*, 15(8): 53–62.
- Tan, W.S., N.B.A. Hamzah, S. Saaban *et al.* (2018). Observations of occurrence and daily activity patterns of ungulates in the Endau Rompin Landscape, Peninsular Malaysia. *Journal of Threatened Taxa*, 10(2): 11245–11253.

- Tobler, M.W., S.E. Carrillo-Percastegui & G. Powell (2009). Habitat use, activity patterns, and use of mineral licks by five species of ungulate in south-eastern Peru. *Journal of Tropical Ecology*, 25(3): 261–270.
- Veech, J.A. (2013). A probabilistic model for analysing species co-occurrence. *Global Ecology & Biogeography*, 22(2): 252–260.
- Wicaksono, G., T.M. Setia, A. Yanuar *et al.* (2022). The ecological characteristics of mineral licks associated with animals in Belantikan Hulu Area, Central Kalimantan, Indonesia. *Genbinesia Journal of Biology*, 1(3): 23–25.
- Wich, S., E. Meijaard, A. Marshall *et al.* (2004). Distribution and conservation status of the orangutan (*Pongo* spp.) on Borneo and Sumatra: How many remain? *Oryx*, 42(3): 329–339.
- Zanni, M., F. Brivio, S. Grignolio *et al.* (2021). Estimation of spatial and temporal overlap in three ungulate species in a Mediterranean environment. *Mammal Research*, 66: 149–162.
 - Submitted: 20 Sep 2024, Accepted: 21 Jul 2025 Subject Editor: Juan Herrero
 - G. Wicaksono¹*, T.M. Setia², I. Sapari³, F. Basalamah² & T. Ariyanto¹
- ¹ Mandala Katalika Indonesia (Manka) South Jakarta 12510, Indonesia
 - ² Department of Biology, Faculty of Biology & Agriculture, Universitas Nasional, Jakarta, Indonesia
 - ³ Yayasan Orangutan Indonesia (Yayorin), Central Kalimantan 74112, Indonesia *E-mail: gusti wicaksono@manka.id