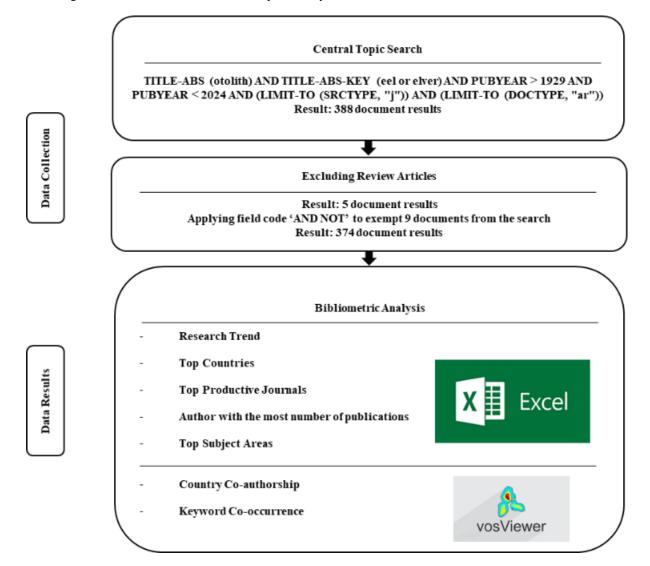
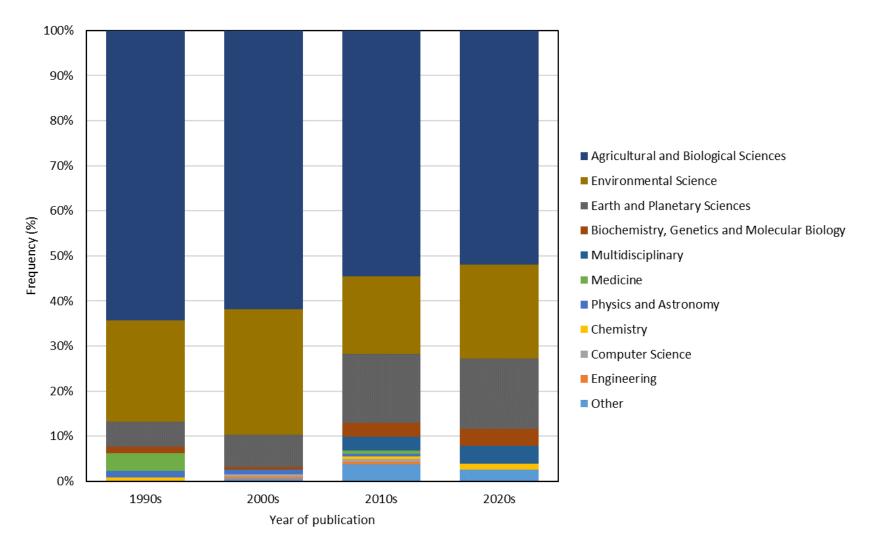
Supplemental Tables and Figures

Sup. Table 1. Top 10 journals publishing otolith research on eels (Scopus corpus, 1930–2023; n = 374). Columns report journal output, total citations, 2023 CiteScore, the most-cited eel-otolith article within that journal (title only) and its citation count, and the publisher.

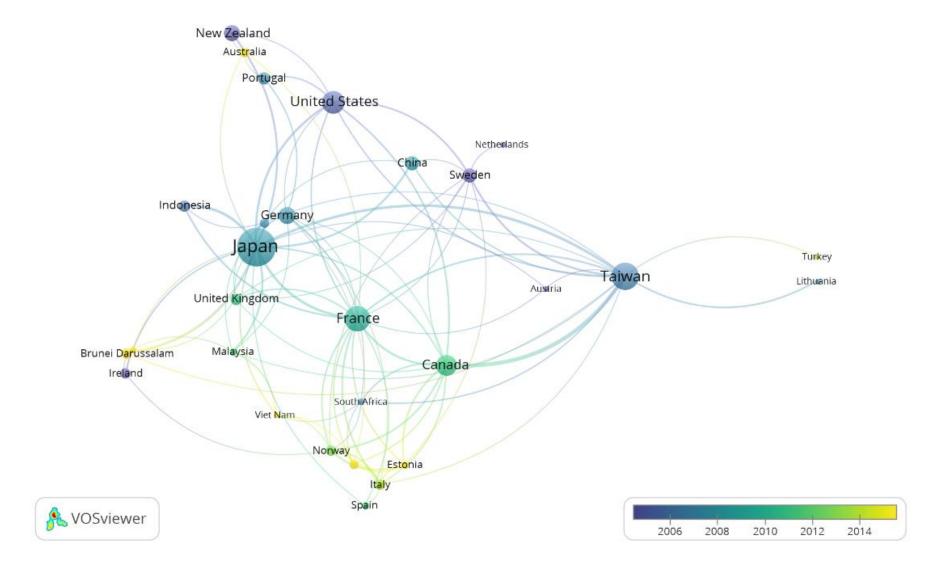
No.	Source title	Total publications (%)	Total citations	CiteScore (2023)	Most-cited article (title only)	Citations	Publisher
1	Journal of Fish Biology	43 (11.5)	1162	4	Recruitment mechanism of the eel, <i>Anguilla japonica</i> , to the Japanese coast (Tsukamoto, 1990)	129	John Wiley & Sons
2	Marine Ecology Progress Series	30 (8.0)	2436	5.3	Facultative catadromy of the eel <i>Anguilla japonica</i> between freshwater and seawater habitats (Tsukamoto & Arai, 2001)	275	Inter-Research
3	Marine Biology	26 (6.9)	1184	4.2	Growth history and age at recruitment of European glass eels (<i>Anguilla anguilla</i>) as revealed by otolith microstructure (Lecomte-Finiger, 1992)	139	Springer Nature
4	Environmental Biology of Fishes	23 (6.0)	579	2.6	Seamounts, new moon, and eel spawning: the search for the spawning site of the Japanese eel (Tsukamoto <i>et al.</i> , 2003)	87	Springer Nature
5	Ecology of Freshwater Fish	12 (3.2)	323	4.1	Variation in the demographic characteristics of yellow-phase Japanese eels in different habitats of the Hamana Lake system, Japan (Yokouchi <i>et al.</i> , 2008)	42	John Wiley & Sons
6	Fisheries Science	12 (3.2)	226	3.8	Spawning time and place of the Japanese eel <i>Anguilla japonica</i> in the North Equatorial Current of the western North Pacific (Ishikawa <i>et al.</i> , 2001)	64	Springer Nature
7	Fisheries Research	11 (2.9)	224	4.5	Improved otolith preparation, ageing and back-calculation techniques for New Zealand freshwater eels (Graynoth, 1999)	38	Elsevier
8	New Zealand Journal of Marine and Freshwater Research	11 (2.9)	399	4.5	Size and age of migrating New Zealand freshwater eels (Anguilla spp.) (Todd, 1980)	70	Taylor & Francis
9	Journal of Applied Ichthyology	10 (2.7)	101	2.3	The early life history of the tropical eel <i>Anguilla marmorata</i> from four Pacific estuaries from otolith microstructure (Budimawan, 1997)	28	John Wiley & Sons
10	Estuarine, Coastal and Shelf Science	9 (2.4)	185	5.6	Habitat use by the European eel <i>Anguilla anguilla</i> in Irish waters (Arai et al., 2006)	74	Elsevier

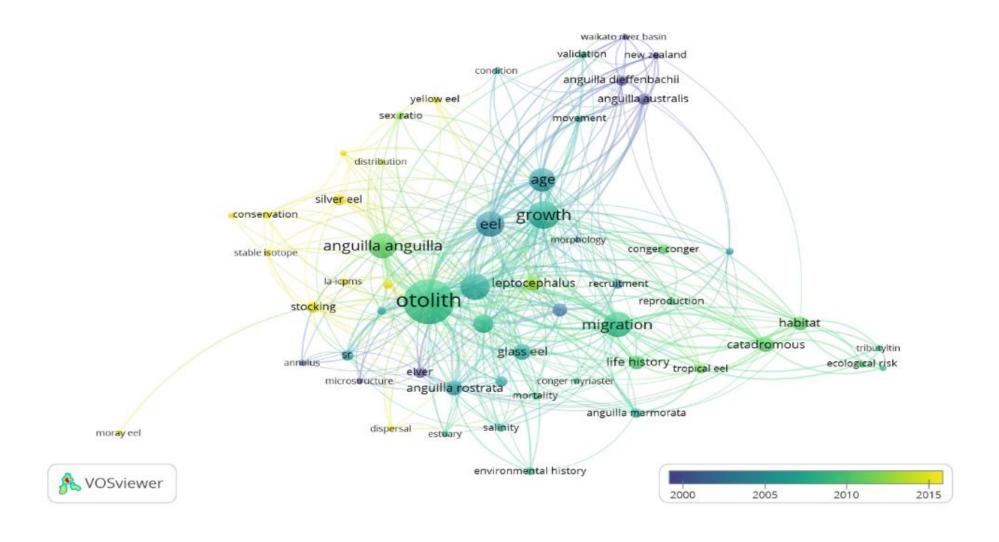

Sup. Table 2. Top 10 academic institutions publishing eel-otolith research (Scopus corpus, 1930–2023). Non-academic agencies were excluded per Methods. "Share" is the proportion of the 374-paper corpus; years indicate the first and most recent eel-otolith article in the dataset.

No.	Affiliation	Country	Total	Share	Avg. citations	First	Most recent	Total
110.	Amnation		publications	(%)	per paper	year	year	citations
1	The University of Tokyo	Japan	96	25.7	103	1989	2023	3502
2	National Taiwan University	Taiwan	58	15.5	77.3	1987	2020	2551
3	Academia Sinica	Taiwan	32	8.6	67.8	2002	2020	1220
4	Academia Sinica, Institute of Earth Sciences	Taiwan	31	8.3	66.9	2002	2020	1204
5	Université de Perpignan Via Domitia	France	18	4.8	9.8	1990	2023	324
6	Institute of Freshwater Research	China	13	3.5	27.9	1994	2021	752
7	Kyushu University	Japan	13	3.5	12.2	1987	2020	402
8	Bedford Institute of Oceanography, Fisheries and Oceans Canada	Canada	13	3.5	15.5	2002	2022	310
9	Institute of Oceanography, National Taiwan University	Taiwan	13	3.5	22.1	2007	2018	243
10	University of Porto	Portugal	11	2.9	10.5	1997	2022	262


Sup. Table 3. Top 10 most-productive authors in eel-otolith research (Scopus corpus, 1930–2023). h-indices are as reported by Scopus at extraction; affiliations reflect current listings in the dataset.

No.	Author	Scopus Author ID	First year	Total publications	Document h-index	Author h-index	Total citations	Current affiliation	Country
1	Tsukamoto, K.	7.2E+09	1989	62	31	65	2604	The University of Tokyo	Japan
2	Tzeng, W.N.	7.1E+09	1987	50	26	39	2523	National Taiwan University	Taiwan
3	Arai, T.	3.55E+10	1997	48	27	39	2031	University of Brunei Darussalam	Brunei Darussalam
4	Iizuka, Y.	7.1E+09	2002	33	19	39	1359	Academia Sinica, Institute of Earth Sciences	Taiwan
5	Shiao, J.C.	6.7E+09	1999	27	16	26	1229	National Taiwan University	Taiwan
6	Miller, M.J.	5.55E+10	2001	23	18	42	895	The University of Tokyo	Japan
7	Aoyama, J.	7E+09	2001	19	16	39	611	The University of Tokyo	Japan
8	Otake, T.	7.1E+09	1994	17	14	28	1020	Graduate School of Agricultural and Life Sciences, The University of Tokyo	Japan
9	Jessop, B.M.	7E+09	2002	14	9	17	379	Bedford Institute of Oceanography, Fisheries and Oceans Canada	Canada
10	Chino, N.	2.59E+10	2009	13	9	13	311	The University of Tokyo	Japan


Sup. Figure 1. Data retrieval and analysis workflow. Scopus search (22 July 2024), journal articles 1930–2023; exclusion of reviews/bibliometric papers; title/abstract screening; final dataset of 374 articles; descriptive analyses in Excel and network visualizations in VOSviewer. See Methods for exact query and thresholds.


Sup. Figure 2. Subject-area composition by decade (Scopus categories). Proportional distribution of records by subject area for the 1990s, 2000s, 2010s, and 2020s. Agricultural and Biological Sciences dominates throughout; Environmental Science peaks in the 2000s; Earth and Planetary Sciences rises in the 2020s.

Sup. Figure 3. International co-authorship network, 1930–2023 (VOSviewer).

Sup. Figure 4. Published keyword co-occurrence network, 1930–2023 (VOSviewer overlay).

